Elektrifizierung Technischer Organischer Synthesen

~ Die erste große Technologieplattform mit dem Fokus auf den Transfer elektroorganischer Synthesen vom Labor in den industriellen Maßstab ~
 

Informationsmaterial

Überblicksartikel zur Elektrifizierung der Organischen Synthese

A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Electrifying Organic Synthesis, Angew. Chem. Int. Ed. 2018, 57, 5594–5619. [DOI: 10.1002/anie.201711060]
A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Elektrifizierung der organischen Synthese, Angew. Chem. 2018, 130, 5694–5721. [DOI: 10.1002/ange.201711060]


Elektrochemische Arylierungsreaktionen

 S. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Electrochemical Arylation Reactions, Chem. Rev. 2018, 118, 6706–6765. [DOI: 10.1021/acs.chemrev.8b00233]


Bor-dotierten-Diamant Elektroden in der elektroorganischen Synthese

 S. Lips, S. R. Waldvogel, Use of Boron-doped Diamond Electrodes in Electro-organic Synthesis, ChemElectroChem 2019, 6, 1649–1660. [DOI: 10.1002/celc.201801620]


Dynamische Methoden zur Zustandsbestimmung von Elektroden

T. Vidaković-Koch, T. Miličić, L. A. Živković, H. S. Chan, U. Krewer, M. Petkovska, Nonlinear frequency response analysis: a recent review and perspectives, Current Opinion in Electrochemistry 2021, 30, 100851. [DOI: 10.1016/j.coelec.2021.100851]
F. Kubannek, U. Krewer, Studying the Interaction of Mass Transport and Electrochemical Reaction Kinetics by Species Frequency Response Analysis, J. Electrochem. Soc. 2020, 167, 144510. [DOI: 10.1149/1945-7111/abc76e]


Elektrodenmodellierung

F. Kubannek, T. Turek, U. Krewer, Modeling Oxygen Gas Diffusion Electrodes for Various Technical Applications, Chem. Ing. Tech. 2019, 91, 720–733. [DOI: 10.1002/cite.201800181]

M. Röhe, D. Franzen, F. Kubannek, B. Ellendorff, T. Turek, U. Krewer, Revealing the degree and impact of inhomogeneous electrolyte distributions on silver based gas diffusion electrodes, Electrochimica Acta 2021, 389, 138693. [DOI: 10.1016/j.electacta.2021.138693]
F. Röder, R. D. Braatz, U. Krewer, Direct coupling of continuum and kinetic Monte Carlo models for multiscale simulation of electrochemical systems, Computers & Chemical Engineering 2019, 121, 722-735. [DOI: 10.1016/j.compchemeng.2018.12.016]


Lösungsmittelsteuerung in der elektroorganischen Synthese

L. Schulz, S. R. Waldvogel, Solvent Control in Electro-Organic Synthesis, Synlett 2019, 30, 275–286. [DOI: 10.1055/s-0037-1610303]


Beschreibung von Mehrphasentransport

B. J. Etzold, U. Krewer, S. Thiele, A. Dreizler, E. Klemm, T. Turek, Understanding the activity transport nexus in water and CO2 electrolysis: State of the art, challenges, and perspectives, Chem. Eng. J. 2021, 424, 130501. [DOI: 10.1016/j.cej.2021.130501]


Modell-gestützte Kinetik- und Degradationsanalyse

S. Triemer, M. Schulze, B. Wriedt, R. Schenkendorf, D. Ziegenbalg, U. Krewer, A. Seidel-Morgenstern, Kinetic analysis of the partial synthesis of artemisinin: Photooxygenation to the intermediate hydroperoxide, Journal of Flow Chemistry 2021, 11, 641-659. [DOI: 10.1007/s41981-021-00181-2]
J. Geppert, F. Kubannek, P. Röse, U. Krewer, Identifying the oxygen evolution mechanism by microkinetic modelling of cyclic voltammograms, Electrochimica Acta 2021, 380, 137902. [DOI: 10.1016/j.electacta.2021.137902]
T. Haisch, F. Kubannek, D. Chen, Y. Y. J. Tong, U. Krewer, Origin of the Drastic Current Decay during Potentiostatic Alkaline Methanol Oxidation, ACS Appl. Mater. Interfaces 2020, 12, 43535–43542. [DOI: 10.1021/acsami.0c06547]


Moderne Aspekte der Elektrochemie zu Synthese hochwertiger organischer Produkte

S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S. R. Waldvogel, Modern Electrochemical Aspects for the Synthesis of Value-added Organic Products, Angew. Chem. Int. Ed. 2018, 57, 6018–6041. [DOI: 10.1002/anie.201712732]
S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S. R. Waldvogel, Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte, Angew. Chem. 2018, 130, 6124–6149. [DOI: 10.1002/ange.201712732]


Mythen und Missverständnisse in der elektroorganischen Synthese

S. B. Beil, D. Pollok, S. R. Waldvogel, Reproducibility in Electroorganic Synthesis – Myths and Misunderstandings, Angew. Chem. Int. Ed. 2021, 60, 14750–14759. [DOI: 10.1002/anie.202014544]
S. B. Beil, D. Pollok, S. R. Waldvogel, Reproduzierbarkeit in elektroorganischer Synthese – Mythen und Missverständnisse, Angew. Chem. 2021, 133, 14874–14883. [DOI: 10.1002/ange.202014544]


Organische Elektrosynthese - Eine Technik des 21. Jahrhunderts

D. Pollok, S. R. Waldvogel, Electro-organic Synthesis – A 21st Century Technique, Chem. Sci. 2020, 11, 12375–12592. [DOI: 10.1039/D0SC01848A]


Reaktoroptimierung

D. Witt, D. Wilde, F. Baakes, F. Belkhir, F. Röder, U. Krewer, Myth and Reality of a Universal Lithium-Ion Battery Electrode Design Optimum: A Perspective and Case Study, Energy Technol. 2021, 9, 2000989. [DOI: 10.1002/ente.202000989]
X. Xie, R. Schenkendorf, U. Krewer, Toward a Comprehensive and Efficient Robust Optimization Framework for (Bio)chemical Processes, Processes 2018, 6, 183. [DOI: 10.3390/pr6100183]
V. N. Emenike, R. Schenkendorf, U. Krewer, A systematic reactor design approach for the synthesis of active pharmaceutical ingredients, European Journal of Pharmaceutics and Biopharmaceutics 2018, 126, 75-88. [DOI: doi.org/10.1016/j.ejpb.2017.05.007]


Elektrochemische Transfer-Dihalogenierung

X. Dong, J. L. Röckl, S. R. Waldvogel, B. Morandi, Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations, Science, 2021, 371, 507–514.
[DOI: 10.1126/science.abf2974 ]