Electrifying Technical Organic Syntheses

~ the first major technology platform that drives the transfer of electroorganic syntheses from the laboratory to industrial scale ~ 

Information material

Overview article on the electrification of organic synthesis

A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Electrifying Organic Synthesis, Angew. Chem. Int. Ed. 2018, 57, 5594–5619. [DOI: 10.1002/anie.201711060]
A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Elektrifizierung der organischen Synthese, Angew. Chem. 2018, 130, 5694–5721. [DOI: 10.1002/ange.201711060]

Electrochemical arylation reactions

S. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Electrochemical Arylation Reactions, Chem. Rev. 2018, 118, 6706–6765. [DOI: 10.1021/acs.chemrev.8b00233]

Boron-doped diamond electrodes in electroorganic synthesis

 S. Lips, S. R. Waldvogel, Use of Boron-doped Diamond Electrodes in Electro-organic Synthesis, ChemElectroChem 2019, 6, 1649–1660. [DOI: 10.1002/celc.201801620]

Dynamic methods for determining the state of electrodes

T. Vidaković-Koch, T. Miličić, L. A. Živković, H. S. Chan, U. Krewer, M. Petkovska, Nonlinear frequency response analysis: a recent review and perspectives, Current Opinion in Electrochemistry 2021, 30, 100851. [DOI: 10.1016/j.coelec.2021.100851]
F. Kubannek, U. Krewer, Studying the Interaction of Mass Transport and Electrochemical Reaction Kinetics by Species Frequency Response Analysis, J. Electrochem. Soc. 2020, 167, 144510. [DOI: 10.1149/1945-7111/abc76e]

Electrode modeling

F. Kubannek, T. Turek, U. Krewer, Modeling Oxygen Gas Diffusion Electrodes for Various Technical Applications, Chem. Ing. Tech. 2019, 91, 720–733. [DOI: 10.1002/cite.201800181]

M. Röhe, D. Franzen, F. Kubannek, B. Ellendorff, T. Turek, U. Krewer, Revealing the degree and impact of inhomogeneous electrolyte distributions on silver based gas diffusion electrodes, Electrochimica Acta 2021, 389, 138693. [DOI: 10.1016/j.electacta.2021.138693]
F. Röder, R. D. Braatz, U. Krewer, Direct coupling of continuum and kinetic Monte Carlo models for multiscale simulation of electrochemical systems, Computers & Chemical Engineering 2019, 121, 722-735. [DOI: 10.1016/j.compchemeng.2018.12.016]

Solvent control in electroorganic synthesis

L. Schulz, S. R. Waldvogel, Solvent Control in Electro-Organic Synthesis, Synlett 2019, 30, 275–286. [DOI: 10.1055/s-0037-1610303]

Description of multiphase transport

B. J. Etzold, U. Krewer, S. Thiele, A. Dreizler, E. Klemm, T. Turek, Understanding the activity transport nexus in water and CO2 electrolysis: State of the art, challenges, and perspectives, Chem. Eng. J. 2021, 424, 130501. [DOI: 10.1016/j.cej.2021.130501]

Model-based kinetics and degradation analysis

S. Triemer, M. Schulze, B. Wriedt, R. Schenkendorf, D. Ziegenbalg, U. Krewer, A. Seidel-Morgenstern, Kinetic analysis of the partial synthesis of artemisinin: Photooxygenation to the intermediate hydroperoxide, Journal of Flow Chemistry 2021, 11, 641-659. [DOI: 10.1007/s41981-021-00181-2]
J. Geppert, F. Kubannek, P. Röse, U. Krewer, Identifying the oxygen evolution mechanism by microkinetic modelling of cyclic voltammograms, Electrochimica Acta 2021, 380, 137902. [DOI: 10.1016/j.electacta.2021.137902]
T. Haisch, F. Kubannek, D. Chen, Y. Y. J. Tong, U. Krewer, Origin of the Drastic Current Decay during Potentiostatic Alkaline Methanol Oxidation, ACS Appl. Mater. Interfaces 2020, 12, 43535–43542. [DOI: 10.1021/acsami.0c06547]

Modern aspects of electrochemistry for the synthesis of high-quality organic products

S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S. R. Waldvogel, Modern Electrochemical Aspects for the Synthesis of Value-added Organic Products, Angew. Chem. Int. Ed. 2018, 57, 6018–6041. [DOI: 10.1002/anie.201712732]
S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S. R. Waldvogel, Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte, Angew. Chem. 2018, 130, 6124–6149. [DOI: 10.1002/ange.201712732]

Myths and misunderstandings in electroorganic synthesis

S. B. Beil, D. Pollok, S. R. Waldvogel, Reproducibility in Electroorganic Synthesis – Myths and Misunderstandings, Angew. Chem. Int. Ed. 2021, 60, 14750–14759. [DOI: 10.1002/anie.202014544]
S. B. Beil, D. Pollok, S. R. Waldvogel, Reproduzierbarkeit in elektroorganischer Synthese – Mythen und Missverständnisse, Angew. Chem. 2021, 133, 14874–14883. [DOI: 10.1002/ange.202014544]

Organic electrosynthesis - a technology of the 21st century

D. Pollok, S. R. Waldvogel, Electro-organic Synthesis – A 21st Century Technique, Chem. Sci. 2020, 11, 12375–12592. [DOI: 10.1039/D0SC01848A]

Reactor optimization

D. Witt, D. Wilde, F. Baakes, F. Belkhir, F. Röder, U. Krewer, Myth and Reality of a Universal Lithium-Ion Battery Electrode Design Optimum: A Perspective and Case Study, Energy Technol. 2021, 9, 2000989. [DOI: 10.1002/ente.202000989]
X. Xie, R. Schenkendorf, U. Krewer, Toward a Comprehensive and Efficient Robust Optimization Framework for (Bio)chemical Processes, Processes 2018, 6, 183. [DOI: 10.3390/pr6100183]
V. N. Emenike, R. Schenkendorf, U. Krewer, A systematic reactor design approach for the synthesis of active pharmaceutical ingredients, European Journal of Pharmaceutics and Biopharmaceutics 2018, 126, 75-88. [DOI: doi.org/10.1016/j.ejpb.2017.05.007]

Electrochemical transfer dihalogenation

X. Dong, J. L. Röckl, S. R. Waldvogel, B. Morandi, Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations, Science, 2021, 371, 507–514.
[DOI: 10.1126/science.abf2974 ]